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Abstract

The sum-difference surface current formulation is introduced to treat electromagnetic boundary
value problems when anisotropic impedances are specified on both sides of a surface. It can also
be applied to impedance coated bodies. This formulation preserves the duality nature of Maxwell
equations and carries it over into the algebraic form of the integrodifferential operators in the
equations for surface currents. Since a 90° rotation is equivalent to undergoing a duality transform
for an incident plane wave, this particular symmetry in the algebraic form of the operators leads to
sufficient conditions under which the on-axis backscattering of an anisotropic impedance coated
scatterer having a 90° rotational symmetry is eliminated.
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I. INTRODUCTION

Sometime ago the question was raised: "For electromagnetic boundary value
problems with specified surface impedances, how can one go from a non-perfectly
conducting surface on which both the electric and the magnetic equivalent surface currents
are to be found, to a perfectly conducting surface on which the number of unknowns is
halved [1‘]?" The answer to this question turns out to be one of algebra. It is well known that
the impedance specified on the surface of a body separates its interior completely from its
exterior. Therefore an impedance coated body can always be considered as a hollow volume
enclosed by an infinitesimally thin shell with surface impedances specified both on the inside
and the outside of the shell. The inside and the outside of the body can be considered as
constituted of the same medium and the impressed electromagnetic excitation can be treated

as continuous across the shell. On the outside surface, there are the equivalent total electric

current K and total magnetic current L *; on the inside surface, there are K~ and L . For

an exterior problem, only K~ and L~ need to be found; for an interior problem, only K ~ and

-

L are necessary. A single formulation for solving both types of problems would have

required finding all inside and outside currents therefore doubling the amount of work, but
it turns out not to be the case because some of the currents are linear combinations of others.
Furthermore, this formulation holds the key to answering the question posed above.

Since the shell is infinitesimally thin, from Maxwell equations the radiation to the

outside and to the inside of the shell can both be given in terms of integrodifferential

operators on the sum currents K =K + K " and L =L " + L. Note that the outside currents



will not contribute to the radiation in the interior while the inside currents will not contribute
to the radiation to the exterior of the shell. For simplicity in the description, we consider the
exterior problem of electromagnetic scattering. By definition, the radiation is the difference

between the total field and the incident field. On the surfaces of the shell, this definition links

the incident E and H fields and the difference currents K - K and L - L~ to the sum

currents. It is therefore natural to treat the difference currents and the sum currents as the four
unknowns to be solved instead of the inside and the outside currents.

The surface impedance on the outside surface of the shell normalized to the medium
is denoted by Z* and that on the inside surface is Z". They can be tensors if the impedances
are anisotropic and may vary from point to point. By forming the sum impedance
Z =(Z" +Z7)/2 and the difference impedance A = (Z* - Z7)/2, the impedance boundary
conditions provide a set of relations between the difference and the sum currents. It turns out
that the rank of Z determines how the unknown surface currents are solved. If Z is invertible,
then the difference currents are linear combinations of the sum currents so that only the
integrodifferential equations of the sum currents have to be solved. There are only two
unknowns to be solved for both the exterior and the interior problems under this sum-

difference current formulation. If Z is rank 0, then Z = 0; the impedance boundary condition
requires that L be proportional to a 90° rotation of AK. The difference electric current is
obtained from K after the integrodifferential equation on K is solved. This situation includes

the case where Z* = Z~ = 0 when the surface is perfectly conducting, thus the result answers

the question about the transition of the equations from a problem of two variables to one



which has only a single variable.

Instead of dealing with an impedance coated body, this report presents the sum-
difference currents formulation of electromagnetic boundary value problems for the
scattering of an infinitesimally thin surface for which both the inside and the outside currents
are true unknowns to be found. Extension of this formulation to impedance coated bodies is
then discussed.

This formulation preserves the duality nature of Maxwell equations and carries it over
into an explicit specific algebraic form of the integrodifferential operators in the equations
for the sum currents. Since, for a plane wave, a 90° rotation is equivalent to undergoing a
duality transform, this explicit symmetry in the algebraic form of the operators enables us to
deduce sufficient conditions for eliminating the on-axis backscattering of an anisotropic

impedance coated scatterer having a 90° rotational symmetry.

In this report, the time dependence e ~*’ is used. E represents the electric field
intensity divided by the intrinsic impedance of the medium, y/i/€ ; therefore it has the same

unit as H in amperes per meter. So are the electric and magnetic equivalent surface currents K

and L.







II. THE SUM-DIFFERENCE SURFACE CURRENT FORMULATION OF
ELECTROMAGNETIC BOUNDARY-VALUE PROBLEMS

A. STRATTON-CHU FIELD FORMULATION AND RADIATION

On an orientable, piecewise regular surface, whether open or closed, having a surface
electric current density K and a surface magnetic current density L, we define the Stratton-

Chu E-field formula as:
- o - zk2
E_(FS KL = — fK(r)G(? 7)da, -——VfK(r) V,G(F-F )da,

- EV X fSL(?o)G(F—Fo)dao

where 7 is a point which is not on S, k = w,/poso and G(r-r)) , then the

Stratton-Chu H-field formula can be defined as:

H_(%S,KL) = E_(75,L -K

) .
2V x [ RG)G(-7)da, w25 [ L6) G- yda,

(2-2)
- ZEV fSL(fo) *V G(F-F,)da,

Note that if S is a closed surface and K and L are the actual total equivalent surface currents

on S, then ES_C and I;Vs_ . are respectively the £ and H fields at 7 due to all sources inside
§if 7 is located outside S and vice versa. This is a direct consequence of Maxwell equations

[2] and under this circumstance, the Stratton-Chu formulae are equivalent to Maxwell

equations. On the other hand, unlike Poynting theorem, the Stratton-Chu field formulae over

an open surface S are but integrodifferential operators on the tangential vector fields K and L.




over S without any special physical meaning attached.
To introduce equivalent surface currents on S, the direction of the unit normal vector 74

on the surface has to be chosen. Adopting the terminology for a closed surface, we can assign

one side of any orientable surface S as the "outside surface" S*, albeit somewhat arbitrarily

if § is not closed. The outward normal 7" is the unit normal pointing out of this side of S
and for simplicity, we call 7" the normal of S and denote it by 7. The other side of the
surface § is the "inside surface" S. At any point ¥ on S, the inward normal 7~ is -74. As a

convention, the fields and surface currents on $* and S always carry the corresponding

superscripts (Figure 2-1).

Figure 2-1. Outside and Inside Surfaces, Normals and the Equivalent Currents.

Each of the total surface currents K~ and L* on S* consists of two parts: the incident



current (with the additional superscript "inc") and the scattering current (with the additional
superscript "sc") corresponding to the incident field and the scattered field on the particular

side of the surface S:

K*=p*x H* =gt x H™ + p* x g**
(2-3)
K:mc + K:.t,sc
L¥ =E*x a* = E™ x p* + E** x
(2-4)

—

Note that S is infinitesimally thin, hence A *™ = B " = f ™ and E " = ¢ - f™ op

— _

Ssothat K™ = - ™™ and [ "™ = - "™ Therefore the sum currents K and L on S

defined below are also the corresponding sums of the scattering currents only:

s

K=K +K =K"™ +K™

(2-5)

e o Sase | mese
L +L L + L

t~
0

Since the Stratton-Chu field formulae are linear operators on the surface currents, the

radiated fields from surface currents on S are determined by the sum currents only:

E*() =E_(FS"K'\L"y + E_(%S" K L) = E_(#S,K,L)
(2-6)

H* () =H_(7S,KL) = E_(FS,L-B

B. CONDITION ON THE CURRENTS IMPOSED BY MAXWELL EQUATIONS

o

As 7 approaches 7 on $* the tangential components (denoted by the subscript

"tan") of Eq. (2-6) provide four equations relating the incident fields and the total currents




on both sides of S through the fact that the incident field is the difference between the total

and the scattered field:
Er = E, - B, o SK L) 2-7)
Eyn =E, -E_ (.S KL (2-8)
A =Hy -H_ (.SKL) (2-9)
Hot = Hy - H_ (.S KL (2-10)

These four equations are not independent of each other. Because

At x (E(F*) x i*) = E_(7 = n* x L*
(2-11)
A* x (HF* x i*) = H (75 = -A*x K"

the difference between Eqgs. (2-7) and (2-8) trivially confirms the definition of the sum
equivalent magnetic current while the difference between Eqs. (2-9) and (2-10) confirms the
definition of the sum equivalent electric current as both can be deduced directly from
Maxwell equations. We choose to use the sum of Eqs. (2-7) and (2-8) and that of Egs. (2-9)
and (2-10) as the two independent linear combinations out of Eqgs. (2-7) through (2-10) to

link the incident fields to the total surface currents on S* as dictated by Maxwell equations:



where M and N are linear integrodifferential operators on the tangential vector fields K and

—

L overS.
Under any orthonormal coordinates (u,v) over S having #, ¥ as the unit basis vectors

and with # = i x ¥, a tangential vector field A over S can be written in matrix form as:

A

u

.Then A x A =
A

v

_Av 0

= -i0,A where 0, = [

—

A = 5
i

-
0 } is one of the Pauli spin

matrices. Note that 0,> = 1. Using these matrix notations, we can rewrite Eq. (2-12) in the

following form:

0 iolg"-R") [M -N||R| _|Ea
. = REN (2-13)
-io, O |/ 7+ _f- N M||f Ht;ZC

C. IMPEDANCE BOUNDARY CONDITION
Maxwell equations alone cannot determine the electromagnetic fields completely. If
S is an open surface, appropriate boundary condition which the fields satisfy on § must be

specified. It is usually given in terms of the impedance boundary condition, a linear relation
among the tangential components of the total £ and the total A fields on S. If S is a closed

surface, there are two possibilities: One is to specify the electric and magnetic properties of




the volume within S and require the fields to satisfy regularity conditions within S and be
linked to the fields outside through boundary conditions across S; another is to specify the
impedance boundary condition on S* for an exterior problem or on S “for an interior problem.
Note that an impedance boundary condition over a closed surface S completely separates the
exterior from the interior of S. Therefore, the surface impedance on S~ can be arbitrary for
an exterior problem while that on $* can be arbitrary for an interior problem. In this thesis,
normalized surface impedances Z* are assumed to be specified on §* whether S is an open
or a closed surface. Note that an open surface S can be considered as bounded within the
closed surface formed by joining S* and S~.
The impedance boundary conditions on S* are defined by:

o

At x (E” x %) = Z* (A* x HY) (2-14)

or equivalently, in terms of the total surface currents:

=7*K* (2-15)

With the matrix notations for tangential vector fields over S in the orthonormal coordinate
system (u, v) introduced before, we can consider Z* as 2x2 matrices and rewrite eq. (2-15)

in the form:

Z*[K + (K" - K] (2-16)

N | =

which can readily be recast into a relation among sum and difference currents:

Z 0
-A -ig,

K
L

-A -ig,||K" - K

2-17)

10



with

Z - % @+ 2 2-18)

and

A = % AR A (2-19)

Eqgs. (2-13) and (2-17) are a set of four two-dimensional vector equations to be solved for the

sum and difference equivalent electric and magnetic surface current densities on S.

D. ALGEBRA OF THE SUM-DIFFERENCE CURRENT EQUATIONS

The existence and uniqueness of solution to either the exterior or the interior problem
specified in terms of the impedance boundary condition have been well established [3]. Here
we want to investigate how such a solution can be obtained from egs. (2-13) and (2-17).
Clearly eq. (2-17) defines uniquely the algebraic relationship between the difference and the
sum currents if Z is invertible. For example, the difference currents can be expressed in terms

of the sum currents:

E' -k 0 o, K
=~ . R | _ (2-20)
L"-L -io, 0 L
where
- |Z-AZ7'A -iAZe,
R = (2-21)

. -1 -1
io,Z"A 0,Z o,

11



An equation for the sum currents is obtained by substituting eq. (2-20) into eq. (2-13):

M -N|[§ Bl |Eam
|+ R| =2 (2-22)
N ML L H.S

which can be solved for K and L. Eq. (2-20) in turn enables us to compute the difference

currents algebraically then split the sum and the difference currents into total currents on S=.
If Z is not invertible, then the situation is more complicated. Z can either be of rank

0 when Z =0 or rank 1 when det[Z] = 0 but Z # 0. Egs. (2-13) and (2-17) can be combined

into an equation for the sum currents K and L:

1 iAo, |[ar -N[E] |z o |[£ 1 iAo, ] |EM
+ ) =2 i . (2-23)

0 —iZO'2 N M E -A ~10, E 0 —lZO'2 ﬁznc

tan

When Z = 0, eq. (2-17) gives the null relations L - L =i GZA(IZ "-K") and

L = io,AK hence L* = io, AK*. Eq. (2-23) becomes one for K only:

M -N]| 1] E
1 iA K=2|1iA 2-24
[ i 02] N M||ic,A [ i 02] ;o (2-24)

Eq. (2-13) has to be used to find the difference electric current:

— -

K' - K =io,[N +iMo,A| K - 2ic,H (225)

Therefore,

12



. 1 . . = . r3 inc
K* = —{l £ io)[N + iMo,A] }K = ic,H,; (2-26)
Since the last term in eq. (2-26) is K i’mc,
5k, SC 1 . . 74
K** = 5{1 + zoz[N + zMozA] }K (2-27)

L and L~ can be obtained algebraically by multiplying i0,A to K and K~ respectively.

On the other hand, by eq. (2-13),

L** = %ioz{A * [M - iNo,A] 1K (2-28)

Note that the Z = 0 case includes the special situation Z* = Z~ = Z = 4 = 0 when
both sides of § are perfectly conducting. Under this circumstance L = L* = 0 and the

operator N is never involved.
When Zis rank 1, Z #0 but det[Z] = 0. The right hand side of eq. (2-17) provides one

linear relation between the components of L - i 02AI§" which can be used to reduce the four

components of K and L as the unknown quantities in eq. (2-23) to three so that the
remaining three components can be solved. The left hand side of eq. (2-17) assures that the

same linear relation between the components of L - iozAf exits between corresponding

components of the difference currents. Eq. (2-13) again has to be invoked to compute three
other linearly independent combinations of the components of the difference currents from

the sum currents.

13




E. CONSIDERATIONS FOR A CLOSED SURFACE
When S is a closed surface, the choice of Z™ can be arbitrary for an exterior problem

such as scattering while the choice of Z* is arbitrary for an interior problem. It is desirable

to choose Z"= -Z* sothat Z=0and A4 = Z* = -Z". Then we have L = i OZAK" and only K

has to be computed. With such a choice, for an exterior problem,

~ese 1 vy ; |
B = 2(1 - o,M0,Z" + ig,N)K (2-29)

—

vsc 10 .. . L,
L =—2—2(z +iNo,Z* - M)K (2-30)

and for an interior problem:

> =, SC 1 - : 4

=51 - M0z - io,MK (2-31)
L-’—,sc _ i02 - : Y 4

=— (M -Z" +iNoZ)K (2-32)

14



l III. A THEOREM OF ANISOTROPIC ABSORBERS

A. AXIAL RADIATION FROM A SURFACE OF 90° ROTATIONAL
SYMMETRY
The xy-plane cross section of a surface S having a 90 °rotati0na1. symmetry around
the z-axis is shown in Figure 3-1. Because of this symmetry, S can be decomposed into four

| non-overlapping congruent pieces S,, S,, S, S, so that a 90 °rotation will bring S; into S, .

(—yo,xo)

!

\{

( Yo —xo)

Figure 3-1 Cross Section of a Surface of 90-Degree Rotational Symmetry.

(These subscripts are considered as equal under modulo 4.) Therefore each piece S, of § can




oF, oF.
be parametrized in the same orthonormal coordinates (u, v), with i = -é—’ V= a—‘ the
u v

orthonormal basis vectors on S;, as follows:

r = x,w,v),y,m,v),z,(1,v))
Fz = (_yo(u’ v), xo(u, v), Zo(u3 v))

3-1
F3 = (—xo(u,v), —yo(u,v), Zo(u,V) )

Py = O,u,v), —x,(u,v),z,(1,v))

where 7, € §;. As an example of a possible choice, u = constant and v = constant can be the

lines of curvature of §,.

In terms of the coordinates (i, v), the sum surface current distributions on S; are:

KF) = Kwv)

- R 3-2
L#) = Lwv) G2
Since for r » 7
. i|F-F, |
G(7) = (3-3)
kr
VG@) = ik?G = -V, G (3-4)

the radiation from such current distributions at a distance r» max | 7,| along the positive

z-axis is, from eq. (2-6):

16



E*(» = E_(7S,R L)

41trf LECARY W1+ LK (7)) L ()1} e 'k‘/mdao

3 3-5
4nrffs{f;[Kix(u,v)+Liy(u,v)] (3-5)
! 2.2, 2
+ 33 (K (u,v) - L(u, v)]} el
-1 »

Note that this approximation is independent of the wavelength; it is applicable in regions
closer to S than the usual Fresnel zone.
B.  CONDITION FOR VANISHING ON-AXIS BACKSCATTERING

Consider two situations when a linearly polarized plane wave of unit strength is
incident on S along the z-axis from the positive direction: Situation 1, identified with the
superscript (1) has the wave polarized in the x-direction while Situation 2, identified with the

superscript (2), has the wave polarized in the y-direction. The incident fields are respectively:

=inc,(1) aA -k
E™® < g gk
= inc, (1) . (3'6)
H"™ - _ 5)\ e ~ikz
E—:inc,(Z) =Je -ikz
77 inc,(2) 7 ] (3"7)
H™Y = 3 ¢ ik

Note that, as seen from the positive z-axis, the incident wave in Situation 2 is that of

Situation 1 rotated by 90° counterclockwise. Furthermore, Situation 2 can be obtained from
Situation 1 through the duality transformation E ™ -~ f ™, F™ . _ fin Therefore, for

a plane wave, 290° rotation is equivalent to undergoing the duality transform.
Because of the rotational symmetry of S, the currents excited on S, under Situation

1 must appear on S,,; under Situation 2. Therefore:

17




2 [¢))]
I<i(+)l,x(u’ V) = - Ki,y (,v)

@ 1)
Ki*l,y(u,v) = Ki,x (u,v)

2 a
Ki(+)],z (ua V) = Ki,z) (uo V)

1

(0] (
L mv) = - L) (u,v)
2 1)
Li+1,y(u,v) = Li,x (u,V)
2) ¢)]
Lmyz(u,v) = Li,z (u,v)

(3-8)

(3-9)

Assume that Z on S is invertible, the sum currents on S are determined by Eq. (2-22). The

tangential components of the incident fields which appear on the right-hand-side of that

equation under these two situations are:

X
~inc,(1) oA
Etan VX
= e
ﬁinc,(l) _12.)';
tan
_\'}.}’,‘_
iy
[ inc,(2)
Emc A
tan = vy ~ikz _ 0
ﬁinc,(Z) 0% I
tan
9% |

18

~ikz (3__10)
E"inc,(l)
- tan
, (3-11)
~inc, (1)
0 Ax




Therefore,
=(1) (1) = inc, (1)
M -N||E K E
[N mllrol” R o il I ) (3-12)
L L H_°
M N |g® gz Ere® 0 -1]|EM®
N Mllro + R @ @ |1 o inc, (1) (3-13)
> = ry inc, 3 inc,
L L H, H,
Since
0O -I|{|M -N M -N{|0 -I (3-14)
I O|/|N M| |N MI||I o
it follows that if
0 -1 0 -1
I o =R I o (3-15)
0 -
we can multiply [ ; to Eq. (3-12) to get:
M -N|[o -I]|R® 0 -1]|R® 0 -1]|Eps®
+ = (3-16)
N M||I 0O A I 0j|fm I 0] |ginem
tan
Therefore the excited surface currents in these two situations are related by:
& o -1 lg® _fO 51
ol |1 o Fol ZO
19




Combining this result with Egs. (3-8) and (3-9), we have:

()] 0)) (¢)}
Ki+1,x (u, v) = - Li +1’x(u, V) = = Ki,y (u, v)

2 @ — ®
Ki+1,y(u:v) =~ Li+1,y(u’v) - Ki,x (u’ V)

@ (0)]
L7 ,wv) = K

i+1,x

@ 1)
L2 wv) = K]

)
ie1,y V) = L (u,v)

so that
¢ ey} ey}
Z Ki,x (u,v) + Li,y (u,v)] =0
i=1
and
4 1 1
Y K wv) - LY @v)] = 0

i=1

Hence, only the positive z-axis, from Eq (3-5),

E‘“( ) 47r

. 4
) fs{fz (KD W) + LOww)]
i1
4
-1

1

@) = - L))

; , VN 2+ 2
vy Z[Kig)(”,v) - Lilec)(u’v)] }elk (8% Ve dy

(3-18)

(3-19)

(3-20)

(3-21)

and the backscattering from S along the positive z-direction must vanish if Eq. (3-15) is

satisfied.

20




C. IMPEDANCE MATRICES FOR ZERO ON-AXIS BACKSCATTERING

Z-AZ7'A  -iAZ7'o, 0 -
It can be verified that the matrix commutes with .
-io, Z'A o, Zo, I 0
if and only if:
0,Z7'A = -AZg, (3-22)
Z-0,Z7%, =AZ'A (3-23)

where both Z and Aare 2 x 2 matrices. Under the assumption that the inverse of Z exists,

we analyze Eqgs. (3-22) and (3-23) as follows:

Because of the identity:

- 1
zl'=—o9,2Z70, (3-24)

and, by multiplying o, to both sides of Eq. (3-22):

Z7A =-0,AZ"0, (3-25)

Eq. (3-23) can be transformed to

VA

- A(0,AZ%¢,) +0,Z70,

- Ac,Ao0,(0,Z%0,) +0,Z7"0q, (3-26)

1
detZ

[1-(Ao,)?1Z7

21



where

ALA,, - A 0
(Ac)? = Ac,Ac, = | 2 T (3-27)

0 A A, - AL

11722

It is observed that Eq. (3-27) is general simplified if A is symmetric. Therfore, we

consider only the case whenA = A” then A, = A, so that:

(Ao,)? = (detA)I (3-28)
From Eq. (3-26),
1 - detZ T
Z=| ——=| Z -
_ ( qetZ ) (3-29)
Therefore, there are two cases:
Casel
0 z,
Z=-2zT-= 12, 20 (3-30)
“z, 0
detA = 1 + detZ = 1 + 2} (3-31)
Case II
Z=2zT (3-32)
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detZ + detA = 1 (3-33)

On the other hand, substituting Eq. (3-24) into Eq. (3-22) yields:

2,(A,-4A,) = (z3-2,) A (3-34)
2 (A =8y) = (2,-z,) A,, (3-35)
28y + 20 = 22,A, = 22,0, (3-36)

For Case 1, Eqs (3-34) and (3-35) require that A, = A, = 0,Eq. (3-36) requires
that A;, = A, = 0.Therefore A = 0.FromEq(3-31), 1 + z{, = 0. Therefore, z,, = = i.

Sothat Z*" =Z =Z ==%g¢
For Case II, Eqs. (3-34) and (3-35) are trivially satisfied. Eq (3-36) becomes:

-

218 * A - 22,A, = 0 (3-37)

Eq. (3-33) is explicitly:

2

Therefore, Eqgs. (3-22) and (3-23) are satisfied if

Z'=27 ==%o, (3-39)
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or Z" and Z~ are symmetric and

detZ*

I
[

(3-40)

detZ "

n
-

(3-41)

It should be noted that, if the shell is a closed surface, then the impedance boundary

condition closes off the inside of the shell from outside. Therefore, either Z* is symmetric
withdetZ™ = 1 or Z" =+ 0, is sufficient to eliminate on-axis backscattering. This is an

extension of Weston’s work [4] to anisotropic impedance coated body of revolution.

24



IV. CONCLUSIONS

In this report, we introduce the sum-difference surface current formulation of
electromagnetic boundary value problems when impedances are specified on both sides of
a surface. For an impedance coated body, the body can be treated as being a surface

separating the space into two regions of identical medium. For an exterior problem, the

impedance normalized to the medium on the inside surface, Z~ can be chosen arbitrarily;
and for an interior problem, that on the outside surface, Z", can be arbitrary. The choice

when Z~ =-Z" is of particular interest because the integrodifferential equation has only
the sum of the equivalent electric surface currents on the outside and the inside surfaces as
its unknown to be solved.

This formulation preserves the duality nature of Maxwell equations and carries it over
into the algebraic form of the integrodifferential operators in the equations for the sum
currents. Since a 90° rotation is equivalent to undergoing a duality transform for an incident

plane wave, this particular symmetry in the algebraic form of the operators leads to the

sufficient conditions that if Z*=Z"=x0,, or if Z* and Z~ are symmetric and

detZ" =detZ"~ =1, the on-axis backscattering of an anisotropic impedance coated scatterer
having a 90° rotational symmetry will be eliminated. Note that here Z* and Z - may vary

with location. This is an extension of Western's result [4] of which the surface impedance

is isotropic.
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